Arctic and Antarctic tests of Polar WRF

Keith M. Hines¹, David H. Bromwich^{1,2}, Francis Otieno¹, and Aaron Wilson^{1,2}

> ¹Polar Meteorology Group Byrd Polar Research Center The Ohio State University Columbus, OH USA

²Atmospheric Sciences Program Department of Geography The Ohio State University Columbus, OH USA

Testing of Polar Weather Research and Forecasting Model (WRF) by BPRC

1. Permanent ice sheets

Greenland (Hines and Bromwich 2008, MWR)

Antarctic climate simulations (Francis Otieno at OSU)

Antarctic AMPS forecasts (NCAR MMM Division)

- 2. Polar pack ice
 - Use 1997/1998 Surface Heat Budget of the Arctic (SHEBA) observations on drifting sea ice

Selected months: January, June, and August

Bromwich et al. (2009, JGR)

3. Arctic land

Northern Alaska (Hines et al. 2010, J. Climate)

Arctic System Reanalysis Grid (Wilson 2010, M.S. Thesis)

Western Arctic Domain

1600

11th WRF User's Workshop

Polar WRF for WRF Version 3.1.1

- Tar file supplement to WRF Version 3.1.1 (Oct. 5, 2009)
 - Specified variable sea ice thickness (ASR-inspired)
 - Specified variable snow depth on sea ice (ASR-inspired)
 - 2 sfc temperature calculation options for permanent ice
 - Sea ice albedo seasonal specifications
 - Sea Ice fraction initialization (AMSR-E or bootstrap sea ice)
- Sea ice fraction is standard WRF option for Noah or RUC
- Standard WRF 3.1.1 updates to Noah snow pack heat transfer

snow albedo – improved, Livneh et al. (2010)

<u>Coming to WRF 3.2 in July 2010 – with additional testing</u>

As Legis consuming systems Drive duranting systems

11th WRF User's Workshop

Antarctic results

Domain showing terrain, sea ice extent and station sites

Polar WRF 3.0.1.1

Most of the stations are located in low lying coastal regions

Only two Upper Air stations on the plateau

Most AWS stations are on the Ross Ice Shelf and the Peninsula

At 60 km some Island stations around the Peninsula are not identifiable in the model leading to large errors

Sharp gradients in the terrain pose serious challenges for verification using coastal stations

BSRN-Baseline radiation Network IGRA-Integrated Global Radiosonde Archive (NCEP) AWS- Automatic Weather Stations (AMRC) NCDC –National Climatic Data Center (NOAA)

Polar WRF represents the variability of downward shortwave accurately for most of the year

Polar WRF does have excess shortwave reaching the surface in the summer; Differences a re more pronounced at the South Pole

The variability at the South Pole is substantially smaller in the model than in the observations.

The variability of the LWD, responsible for surface heating during the long Antarctic winters , is also accurately represented

Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

More SWD (~40 W/m2) at the surface evident across the continent

Occurs mostly in the 12 hours following local noon

11th WRF User's Workshop

Polar WRF 3.0.1.1 vs 9 IGRA Upper Air Stations for 2007

	Temp	peratu	re	Geopotential			Wind Speed			U-Wind			V-Wind		
	BIAS	RMSD	CORR	BIAS	RMSD	CORR	BIAS	RMSD	CORR	BIAS	RMSD	CORR	BIAS	RMSD	CORR
850	1.04	2.57	0.94	-6.26	23.67	0.96	1.42	5.44	0.69	0.24	5.39	0.69	0.45	5.34	0.65
700	0.87	2.46	0.92	0.63	26.17	0.89	1.27	4.78	0.68	0.96	4.90	0.69	-1.76	6.58	0.57
500	0.03	1.77	0.96	-1.27	29.56	0.97	0.51	4.95	0.77	0.83	6.07	0.67	-0.14	6.43	0.69
400	0.07	1.70	0.88	2.2	33.13	0.98	0.38	5.93	0.77	0.43	7.11	0.67	0.24	7.74	0.70
300	0.90	2.01	0.65	5.38	36.26	0.98	-0.24	6.50	0.80	0.21	7.67	0.67	0.44	8.39	0.70
250	0.76	2.28	0.86	22.47	41.3	0.98	0.04	5.48	0.83	0.08	6.73	0.68	0.39	7.47	0.70
200	0.04	1.96	0.93	36.98	48.74	0.99	0.45	4.19	0.86	0.12	5.29	0.70	0.45	6.04	0.70

Biases in Polar WRF simulations are small between 850 and 300 hPa

Geopotential errors become larger above 300 hPa (small percentage differences)

Preliminary surface verification show comparable skill but data are more problematic

Overall Polar WRF shows skill levels in the SH that are comparable to those in the NH

11th WRF User's Workshop

Polar WRF Test – Phase III: Arctic Land

- Polar WRF with WRF version 3.0.1.1
- Western Arctic Grid 141 x 111 points, 25 km spacing, 28 levels
- Atmospheric Initial and Boundary Conditions: GFS FNL
- Sea Ice Fraction: NSIDC/WIST AMSR-E (25 km)
- Soil Initial and Boundary Conditions

Fixed Temperature at 8 m depth from <u>Drew Slater</u>

bottom of the phase change boundary temperature

Initial Soil Temperature and Soil Moisture from Mike Barlage

10-year Noah Arctic run for spin-up driven by JRA-25

start set for 0000 UTC 15 November 2006

• Run for November 2006 to July 2007

48-hour Simulations with GFS Atmospheric I.C.

Cycle Soil Temperature, Soil Moisture, Skin Temperature 48-hr output Day X run → I.C. for Day X+2 run Runs on OSC Glenn Cluster

11th WRF User's Workshop

Bonanza Creek perimental Forer Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Barrow Observations **PWRF Estimated** 0.9 0.8 0.7 Cloud Fraction 0.6 0.5 0.4 . . . 0.3 0.2 0.1 ιī. 0 185 195 200 205 210 150 155 160 165 170 175 180 190 215 Julian Day 2007 Daily Average Precipitable Water Vapor at Barrow 32 3.2 July June 30 3 2.8 28 Polar WRF 26 2.6 Observations 24 2.4 2.2 22 **7** 20 **6** 18 2 E j٩. 1.8 1.6 16 ŧ. 14 1.4 ۰. 1.2 12 10 1 0.8 8 6 0.6 150 155 160 165 170 175 180 185 190 195 200 205 210 215 Julian Day 2007

Daily Average Cloud Fraction at Barrow

WRF Estimated Cloud Fraction

 $\mathbf{CF} = \mathbf{A}_{\text{LIQ}} \text{ CLWP} + \mathbf{A}_{\text{ICE}} \text{ CIWP}$ (Fogt and Bromwich 2008)

Summer PWV over Arctic land is good, but cloud cover shows a deficit.

Result: excessive incoming shortwave at surface

11th WRF User's Workshop

<u>Sensitivity Tests</u>: change PBL, change microphysics, add soil moisture

<u>Results</u>: The PBL and microphysics impact the Arctic stratus over the Arctic Ocean, but little impact over land at Atqasuk.

Added soil moisture doesn't increase cloud cover.

The temperature profile is well captured above the boundary layer. Simulated relative humidity and specific humidity are too large above the boundary layer.

Is too much moisture mixed out of the boundary layer?

11th WRF User's Workshop

WRF Noah 3.1.1's new snow albedo predicts high snow albedo prior to snow melt and rapid decrease of albedo once snow melt begins. User specification of snow albedo is no longer required.

Albedo results at Barrow and Sagwon Hill are improved.

<u>Summary</u>

- Polar WRF has been tested for Greenland, the Arctic Ocean, northern Alaska and Antarctica
- The tar file supplement for Polar WRF (3.1.1) is the current public version
- Polar WRF 3.2 coming in July 2010
- Continuing tests over Arctic land show
 -A deficit in summer cloud cover that could be related to vertical mixing.
 -Increased soil moisture does not increase summer cloud cover.
 - -Improved soil temperature and ground heat flux with organic (low heat conductivity) soil. -Improved snow albedo in WRF Noah 3.1.1 (Livneh et al. 2010 snow albedo).